An endogenous sulfated inhibitor of neuronal inositol trisphosphate receptors.

نویسندگان

  • J Watras
  • R Orlando
  • I I Moraru
چکیده

In cerebellum, inositol trisphosphate- (InsP(3)-) gated Ca channels play a key role in learning, though they exhibit a low sensitivity to InsP(3) compared to peripheral tissues. In the present study, the cerebellar InsP(3) receptor is shown to be associated with a novel inhibitor of InsP(3) binding. (3)H-InsP(3) binding studies indicated that this inositol trisphosphate receptor inhibitor (IRI) could completely inhibit InsP(3) binding to the purified cerebellar InsP(3) receptor and acted as a competitive inhibitor. Gel filtration of IRI showed a predominant peak at 6500 Da, though this peak appeared to be an aggregate (with a monomeric molecular mass of approximately 1500 Da). Mass spectrometry of IRI showed a predominant peak at 1635 m/z, consistent with this low molecular mass estimate. The inhibitory activity of IRI was prevented by pretreatment with aryl sulfatase, suggesting the presence of a critical sulfo ester in IRI. IRI was insensitive to proteases and organic extraction but bound to concanavalin A, suggesting that IRI is a sulfated glycan. IRI was present in cerebellum but below the level of detection in aorta. IRI was also present in the neuronal cell line N1E115 (which exhibits a low sensitivity to InsP(3)). We conclude that IRI is a novel endogenous sulfated inhibitor of the InsP(3) receptor that modulates the sensitivity of the InsP(3) receptor and thus may explain the low InsP(3) sensitivity of neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication.

During brain development, endogenously generated coordinated neuronal activity regulates the precision of developing synaptic circuits (Shatz and Stryker, 1988; Weliky and Katz, 1997). In the neonatal neocortex, a form of endogenous coordinated activity is present as locally restricted intercellular calcium waves that are mediated by gap junctions (Yuste et al., 1992). As in other neuronal and ...

متن کامل

Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling.

Intracellular calcium signals are responsible for initiating a spectrum of physiological responses. The caldendrins/calcium-binding proteins (CaBPs) represent mammal-specific members of the CaM superfamily. CaBPs display a restricted pattern of expression in neuronal/retinal tissues, suggesting a specialized role in Ca2+ signaling in these cell types. Recently, it was reported that a splice var...

متن کامل

Calcium oscillations in pancreatic acinar cells, evoked by the cholecystokinin analogue JMV-180, depend on functional inositol 1,4,5-trisphosphate receptors.

It has been reported that the synthetic heptapeptide cholecystokinin (CCK) analogue JMV-180 evokes cytosolic Ca2+ signals in pancreatic acinar cells via mechanisms that do not include either the generation or action of inositol 1,4,5-trisphosphate (InsP3) (Saluja, A. K., Dawra, R. K., Lerch, M. M., and Steer, M. L. (1992) J. Biol. Chem. 267, 11202-11207; Yule, D. I., and Williams, J. A. (1992) ...

متن کامل

Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation.

We have identified two distinct transcripts of inositol 1,4,5-trisphosphate receptor by using the PCR on first-strand cDNAs from various rat tissues. The longer form, corresponding to the previously cloned adult rat brain inositol 1,4,5-trisphosphate receptor, contains a 120-nucleotide insert between the two cAMP-dependent protein kinase phosphorylation consensus sequences. The shorter form (la...

متن کامل

Activation of inositol 1,4,5-trisphosphate receptor is essential for the opening of mouse TRP5 channels.

We studied the opening mechanism of Ca(2+)-permeable channels formed with mouse transient receptor potential type 5 (mTRP5) using Xenopus oocytes. After stimulation of coexpressed muscarinic M(1) receptors with acetylcholine (ACh) in a Ca(2+)-free solution, switching to 2 mM Ca(2+)-containing solution evoked a large Cl(-) current, which reflects the opening of endogenous Ca(2+)-dependent Cl(-) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 12  شماره 

صفحات  -

تاریخ انتشار 2000